Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 26(5): 1091-1102, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31743947

RESUMO

Spin-orbit charge-transfer intersystem crossing (SOCT-ISC) is useful for the preparation of heavy atom-free triplet photosensitisers (PSs). Herein, a series of perylene-Bodipy compact electron donor/acceptor dyads showing efficient SOCT-ISC is prepared. The photophysical properties of the dyads were studied with steady-state and time-resolved spectroscopies. Efficient triplet state formation (quantum yield ΦT =60 %) was observed, with a triplet state lifetime (τT =436 µs) much longer than that accessed with the conventional heavy atom effect (τT =62 µs). The SOCT-ISC mechanism was unambiguously confirmed by direct excitation of the charge transfer (CT) absorption band by using nanosecond transient absorption spectroscopy and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The factors affecting the SOCT-ISC efficiency include the geometry, the potential energy surface of the torsion, the spin density for the atoms of the linker, solvent polarity, and the energy matching of the 1 CT/3 LE states. Remarkably, these heavy atom-free triplet PSs were demonstrated as a new type of efficient photodynamic therapy (PDT) reagents (phototoxicity, EC50 =75 nm), with a negligible dark toxicity (EC50 =78.1 µm) compared with the conventional heavy atom PSs (dark toxicity, EC50 =6.0 µm, light toxicity, EC50 =4.0 nm). This study provides in-depth understanding of the SOCT-ISC, unveils the design principles of triplet PSs based on SOCT-ISC, and underlines their application as a new generation of potent PDT reagents.


Assuntos
Materiais Biocompatíveis/química , Fármacos Fotossensibilizantes/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Células HeLa , Humanos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Teoria Quântica , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Solventes/química , Marcadores de Spin
2.
J Phys Chem B ; 122(24): 6396-6402, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29847732

RESUMO

The properties of lipid membranes at low temperature are important for a number of biomedical and biotechnological applications, and the success of these applications depends on understanding the effects of temperature changes on intermolecular lipid-lipid and lipid-water interactions. Here, we use Fourier transform infrared spectroscopy to study lipid suspensions in water/dimethyl sulfoxide (DMSO) solutions in the -60 to 30 °C range. DMSO is a cryopreservative agent of cellular systems, and its action is largely related to its interaction with the lipid membrane, especially in the low-temperature regime. In the present work, we analyze the effects of solvent composition on the structural and thermotropic properties of cholesterol (chol)-loaded liposomes of palmitoyl-oleylphosphatidylcholine (POPC) because POPC/chol liposomes are suitable models of the plasmatic membrane. To this extent, we compare the properties of lipid vesicles suspended in water and water/DMSO solution at 0.10 DMSO mole fraction and we observe that the gel phase of the membrane has an increased thermal stability on DMSO addition. We estimate that the amount of unfrozen water at T = -60 °C is much reduced by the presence of DMSO, both in the gel- and the liquid-ordered phase of the membrane. Interestingly, we also evidence a reduced hydration of the lipid heads in the presence of DMSO when the vesicles are dispersed in a liquid solution, whereas the addition of DMSO does not alter the hydration state of phosphate and carbonyl groups in the frozen state of the membrane.


Assuntos
Colesterol/química , Dimetil Sulfóxido/química , Lipossomos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Ligação de Hidrogênio , Fosfatidilcolinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA